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Dynamics of a Charged Test Particle 
in a Hard Rod Fluid 

J.  P i a s e c k i  1 

Received November 15, 1983 

The motion of a charged hard rod, accelerated by a constant and uniform 
external field, in a fluid of mechanically identical neutral particles is studied. 
The system, initially at rest, is excited through collisions with the accelerated 
particle. A class of initial configurations is found for which recollisions between 
the charged rod and the excitation caused by it (a moving particle) never occur. 
The evolution of the velocity distribution of the test particle is analyzed in this 
case. The possibility of obtaining from microscopic dynamics a kinetic equation 
is discussed. The dependence of the current on the external field is shown to 
agree with that predicted by the Boltzmann equation. 
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1. I N T R O D U C T I O N  

The one -d imens iona l  ha rd  rod  f luid has  been  the objec t  of numerous  
studies and  is unti l  now used to analyze  p rob l ems  of kinet ic  theory.  
Fo l lowing  the ear ly  papers  conce rned  with mechan i sms  of i r revers ibi l i ty  (~,2) 

efficient  me thods  were e l abo ra t ed  to ca lcula te  exact ly  d y n a m i c a l  proper t ies  
of the fluid. (3-5) A m o n g  var ie ty  of quest ions which have been  discussed in 
grea t  deta i l  one f inds invest igat ions  of the densi ty  expans ion  of kinet ic  
equat ions,  (4) ca lcu la t ion  of the d y n a m i c a l  s t ructure  factor,  (5) analysis  of the 
behav io r  of kinet ic  equat ions  with respect  to the t ime reversal,  (6) solut ion of 
Bo l t zmann ' s  equat ion,  (7) a n d  re la t ion be tween t ime corre la t ion  funct ions  
and  t r anspor t  coefficients.  (8) Papers  dea l ing  with p rob lems  of M a r k o v i a n  
limits and  ergodic  proper t ies  have been  reviewed by  H. Spohn.  (9) 
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Despite these extensive studies there is, however, relatively little known 
as yet about the dynamics of hard rod fluids in the presence of an external 
field. Apart from the discussion of conductivity based on the Kubo 
formula ~3) and linear response calculations ~4) one can hardly find any 
results. It has been shown recently that the propagation of a charged hard 
rod in a neutral hard rod gas at temperature T = 0 creates a stationary 
current proportional to the square root of the external field, when Boltz- 
mann's equation is used. ~1~ This is, however, an approximate description. 
The purpose of the present note is to make a step toward a rigorous 
analysis of the stochastic process followed by the charged rod. This is 
achieved here only for a special class of initial conditions characterized in 
Section 2. In Section 3 the corresponding dynamical evolution and asymp- 
totic steady states are discussed. Final comments are presented in Section 4. 

2. INITIAL CONDIT IONS:  EL IMINATING RECOLLISIONS 

The system considered here is a one-dimensional fluid composed of 
mechanically identical hard rods of diameter d, distributed on a line. One 
of the rods, playing the role of a test particle, has a charge which couples to 
a uniform, constant external field, giving rise to acceleration a. All the 
remaining particles are neutral and move freely between collisions, unaf- 
fected by the field. The dynamics of binary encounters reduces to instanta- 
neous exchanges of velocities between colliding rods. 

We shall study dynamical effects entirely due to the field by assuming 
the fluid particles to be initially at rest. The charged rod begins then to 
move under the action of the field with acceleration a > 0. In the course of 
time more and more particles acquire a nonzero velocity through collisions, 
and this excitation propagates through the system. Our aim in this section is 
to characterize the class of initial conditions which rule out the possibility 
of interaction between the test particle and the excitation caused by it. In 
other words, we want to investigate under what conditions recollisions do 
not occur so that the charged rod always collides with a particle at rest and 
its propagation develops as if the host fluid was not excited, leading to a 
great simplification in the mathematical description. It should be men- 
tioned here that the possibility of having dynamical evolution without 
recollisions has been already remarked by P. R6sibois (7) in the special case 
of a gas of hard points moving with two allowed velocities (no external 
field). The distribution of the tagged particle satisfies in this case rigorously 
the Boltzmann equation, provided molecular chaos is valid at the initial 
moment. 

Going back to our problem let us suppose that the charged rod begins 
its motion at time t = 0 from point x o = 0. As a > 0, it is accelerated along 
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the positive x axis. Neutral rods, numbered 1, 2, 3 . . . .  , are distributed 
there at points x l , x 2 , x  3 . . . . .  respectively. The labeling is such that 
xl < x 2 < x 3 . . .  As the linear ordering of particles is preserved by the 
dynamics the charged rod will always encounter the same neighboring 
rod 1. 

The first collision occurs at time % satisfying the equation 

at21~2 = x 1 - -  d (2.1) 

The test particle gets stopped at point (x~ - d ) ,  from which it starts again 
its accelerated motion. Simultaneously rod 1 begins a uniform motion with 
velocity a%. It has to cover the distance (x 2 - xl - d) to reach rod 2, and 
needs time [ (x  2 - x I - d ) / a % ]  for it. Therefore, only if the inequality 

a ( X 2 - x l - d )  2 
. . . .  (2.2) x 2 x 1 d > ~ a r l  

is satisfied the charged rod will not collide with its neighbor before the 
latter is immobilized by a collision with rod 2. Using equation (2.1) one can 
conveniently rewrite condition (2.2) in the form 

x 2 -  x 1 - d < 4(x t - x 0 -  d),  x 0 = 0 (2.3) 

When inequality (2.3) holds the second collision suffered by the test particle 
follows the first one after time r 2 satisfying the equation 

a ~ 2 / 2  = x 2 - x ,  - d (2.4) 

The charged rod is stopped now at the point (x 2 - 2d), and rod 1 starts a 
uniform motion with velocity a~- 2 from point (x 2 - d ) .  There is also a 
particle which carries the excitation caused by the first collision and moves 
with velocity a % .  One can repeat now the same reasoning which led to 
inequality (2.3), considering, however, the possibility of particle 1 getting 
back velocity a %  through a collision with particle 2. This results in a set of 
two inequalities 

x 3 - x 2 - d < 4 ( x a - X a _ , - d ) ,  a = l , 2  (2.5) 

which represent a sufficient condition for the occurrence of the third 
collision between the charged rod and rod 1 only when the latter is 
immobile. 

Clearly this analysis can be continued along the same lines yielding the 
following general conclusion: The class of initial spatial configurations of 
the neutral fluid particles characterized by sets of inequalities 

x j -  x j _  l - d < 4 ( x  a - xa_ t - d ) ]  
a = 1,2, , j -  1 t '  j = 2,3 . . . .  (2.6) 
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do not lead at any time t > 0 to an interaction between the test particle and 
the excitation caused by it. In the course of the dynamical evolution 
starting from any of such configurations consecutive collisions of the 
charged rod with its neighbor will occur at the moments when the latter is 
at rest. Denoting by ~'j the time interval between consecutive collisions 
( j -  1) a n d j  

rj = [ 2 ( x j -  xj_,- d)/a] 1/2 (2.7) 

one can rewrite inequalities (2.6) in a compact form 

rj < 2%} 
a =  1 , 2 , . . . , j -  1 j = 2 , 3  . . . .  (2.8) 

3. DYNAMICS OF THE CHARGED PARTICLE 

For a given microscopic configuration of the host fluid, satisfying 
conditions (2.6), the phase space trajectory of the charged rod can be 
described in a simple way. Indeed, its velocity v(t) and position x(t) 
between collisionsj and ( j  + 1) 

are given by equations 

j j+ l  
E q'i< t < ~ q'i (3.1) 
i=1 i=1 

v( t) = a t -  ,c i 
i 

(3.2) 
J 

a 1 x(t)= E,?+ Iv(O] 
i=l 

Consequently, the probability density f(x,v,t[ (~-j)) for finding the test 
particle with velocity v at point x at time t when it follows the trajectory 
characterized by the sequence (TI ,  ~'2, . . .  ) reads 

f(x,v, tl {rj}) 

=O(v)~O(a.rj+l_V)d[x a ~ v2 I [ ( ~ ) ]  
j=O - - 2  i=IT2 -- "~-'~a 8 v--a t-- i=11"i 

(3.3) 
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where 

1, for v > 0 
O(v)= 0, for v < 0  

In statistical mechanics we are led to consider various possible micro- 
scopic trajectories, as the initial state of the fluid is described in a probabi- 
listic way. This induces a stochastic process for the velocity and position of 
the charged rod. The probability density f ( x , v , t )  for finding the test 
particle at time t in point x with velocity v takes the form 

OQ 

f ( x , v , t )  = O ( v ) j ~ _ o f  dr,  . . . f d % l t ~ j + , ( r  . . . . .  r j+,)O(arj+,  - 

a r Z - ~ a  8 v - a  t -  r i 

~) 

(3.4) 

where p,(% . . . . .  %) is the joint probability density for the time intervals 
between collisions ( r~ , . .  : ,  %), compatible with inequalities (2.8). 

Two quite different cases will be studied in this note. First, the case of 
factorized distributions 

p , ( % , . . . ,  %) = l~I p(Ti), n = 1,2 . . . .  (3.5) 
i = l  

where the density p , ( r )=  p(r) is supposed to vanish outside an interval 
(rmin,rmax), such that 0 < 'rrnin < 'rma x < 2"rrnin. As for any two points r , r '  
lying between rmi n and rma x the inequalities (r < 2r') and (r '  < 2z) simulta- 
neously hold, the initial state (3.5) gives a nonzero weight only for se- 
quences (%, r 2 , . . .  ) satisfying conditions (2.8). 

The second case will correspond to the dynamical effect of periodic 
initial configurations, weighted by a probability density #(r) 

p n ( " / ' l , . . . ,  'Tn)=fdTo(T ) 1~ ~( ' r  i --  '/'), /'/ = 1,2 . . . .  (3.6) 
i=1 

Clearly, when all intervals between collisions are equal inequalities (2.8) are 
satisfied. So (3.6) is also an admissible state. In order to exclude the 
possibility of an accumulation of an infinite number of collisions in a finite 
time it will be assumed that 009 in Eq. (3.6) vanishes for ~- < 'rmin, 'rmin ~ 0. 
The initial state (3.6) is different from that described by Eq. (3.5) in that it 
introduces correlations between time intervals separating collisions, whereas 
the latter does not. 

The main object of our study will be the evolution of the velocity 
distribution ~(v, t) of the charged rod. When the initial state of the host 
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fluid has the form (3.5) we get from Eq. (3.4) 

~(v,t) = •  d~o(~) a Jv/a 

• 2 
j = O " 

t) T 1 . . . . .  Tj~ ] 
a 

(3.7) 

,[;v; ,1 I~(v) = p(v/a d'c p('r 

Hence, by applying to Eq. (3.10) the inverse Laplace transformation the 
following linear, local in time kinetic equation is obtained: 

( ~t +a-~v )CP(v't) 

= 8(v)[ f dv' t~(v')cp(v',t) ] - l~(v)~(v,t) (3.12) 

As in the Boltzmann equation the effect of collisions is represented here by 
the difference between the gain and the loss term. The gain term is 
proportional to the Dirac distribution 6(v), because the postcollisional 
velocity of the charged rod is always equal to zero. The steady state velocity 
distribution is found by calculating the limit lim~_,oZ~(V,Z ) = ~st(D),  As 

where 

With the use of the Laplace transformation 

if(z) = fo~176 (3.8) 

Eq. (3.7) can be rewritten 

~(v,z) = [ lO(v)(~d'ro(r)]a .)via ] le-zV/a- ~(z) (3.9) 

Using the fact that ~(v,0) = 8(v) one finds 

z~(v,z) - ~(v,O) + a ~ ~(v,z) 

~(z) l ~ [  v ~ e -zv/a 8( I)) [1 - ~(z)l  Otv)o~ a )  a l l  - t~(z)] (3.10) 

The second term in the right-hand side of Eq. (3.10) can be written in the 
form 

- ~ (v )~ (v ,  z) (3.11) 
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fi(0) = 1, one obtains from Eq. (3.9) 

with 

(3.13) 

M ,  = - fi'(0) =  Jo dr w ( z )  

(the prime denotes the derivative with respect to z). It can be readily 
verified that the distribution q~St(v) is a stationary solution of the ki- 
netic equation (3.12). It is interesting to remark that the current j ( t ) =  
f dv veo(v, t), associated with the motion of the charged rod (the charge is 
put equal to 1) is a linear function of the field at any time t > 0. Indeed, its 
Laplace transform, calculated from Eq. (3.9), has the form 

[ f i ' ( z ) 1  ] (3.14) 
j ( z ) = a  z[l---~-(z)] +z-5 

The steady state current reads 

jst__ l imzj(z)  -- -a#"(O)/2#'(O) = a M J 2 M  1 (3.15) 
z-~0  

where 

Mn =" fo ~dz ~" nO(z), n = 1,2 

One remarkable property of the kinetic equation (3.12) is its locality in 
time. In the collision term the distribution qo(v, t) is multiplied by a function 
of velocity only, which is related to the fact that the collision frequency of 
the charged rod is entirely defined by the initial configurations of the 
neutral fluid. 

We shall now show that in the second case, characterized by the initial 
distribution (3.6), the possibility of obtaining a kinetic equation of this type 
is lost. The distribution (3.6), when put into Eq. (3.4), yields 

~p(v, tl=O(v)fdzp(QO(a'c-v) ~ 6[v-a(t- jz)]  (3.16) 
j=o 

Using again the Laplace transformation we find 

~(v , z )  = l-o(v)e-ZV/a(~176 - e-Z*] - '  (3.17) 
a dv/a 
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The analog of Eq. (3.10) has thus the form 

z~(v,z) - ~(v,O) + a-~v ~(v,z ) 

10(v) (3.18) =8(v) - a  

Analyzing the loss term here we find that in contradistinction to the 
analogous term in Eq. (3.10) it cannot be written as a product of a 
z-independent function and the distribution q~(v, z). It is thus impossible in 
this case to obtain a kinetic equation whose structure would correspond to 
that of the Boltzmann equation. In fact there is a qualitative difference 
between the initial distributions (3.5) and (3.6). There are no correlations 
between time intervals separating collisions in the former, whereas they are 
present in the latter. Loosely speaking one could say that there is not 
enough randomness in the initial state (3.6) to make the kinetic description 
of the type represented by Eq. (3.12) possible. 

The steady state velocity distribution calculated from Eq. (3.17) is 
given by 

Ct(v) = z-~olimSo(v'z)= 1--O(V)fv;ad'ra O(~)_~_ (3.19) 

The mean velocity of the charged rod is proportional to the field at any 
moment t > 0. In the steady state 

j s t=  f (3.20) 

4. D I S C U S S I O N  

The results of this note permit to make some comments on the 
realtionship between the microscopic dynamics and kinetic equations. 
R6sibois' paper (7) shows (in an example) that if initially molecular chaos 
exists and recollisions are impossible the further evolution is rigorously 
governed by the Boltzmann equation. Here, we characterized the class of 
initial states which ruled out recollision processes [notice that conditions 
(2.6) do not depend on the external fieldl. However, elimination of re- 
collisions is not enough for the Boltzmann equation to be valid. In fact this 
elimination implied in our case necessarily the existence of correlations 
between positions of the fluid particles. No such correlations occurred in 
the initial state considered by R6sibois. Our analysis shows that a closed, 
linear, local in time evolution equation can be obtained only if the initial 
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state is sufficiently chaotic. In the case studied here this means that the 
distances between neighboring particles are independent stochastic vari- 
ables, with an appropriate distribution, compatible with inequalities (2.8). 
However, even in such a chaotic case, the initial state of the fluid contains 
spatial correlations. And this influences substantially the velocity distribu- 
tion of the test particle [see, for example Eqs. (3.13) and (3.19)]. 

We have emphasized in our analysis that Eqs. (3.14) and (3.20) showed 
a linear dependence of the current on the field. This is, however, a correct 
statement provided the distributions pn(~-l, ~-2, - �9 �9 %) for the time intervals 
between collisions are field independent. From the physical point of view 
this is very artificial indeed. We should rather consider the class of initial 
conditions in which the distributions of positions of the neutral fluid 
particles are field independent. Then, because of relations (2.7), the cur- 
rents turn out to be proportional to the square root of the field, in 
qualitative accordance with the result found by solving the Boltzmann 
equation.(10) 

In conclusion let us recall again that eliminating recollisions one can 
obtain a Boltzmann-like equation [our Eq. (3.12)] if the system is random 
enough, despite the presence of spatial correlations. 

ACKNOWLEDGMENT 

The author thanks Prof. J. Lebowitz for encouraging comments, and 
Prof. I. Prigogine for his hospitality at the Free University of Brussels, 
where the final version of the manuscript has been written. 

REFERENCES 

1. E. Teramoto and C. Suzuki, Prog. Theoret. Phys. (Kyoto) 14:411 (1955). 
2. H. L. Frisch, Phys. Rev. 104:1 (1956). 
3. D. W. Jepsen, J. Math. Phys. 6:405 (1965). 
4. J. L. Lebowitz and J. K. Percus, Phys. Rev. 155:122 (1967). 
5. J. L. Lebowitz, J. K. Percus, and J. Sykes, Phys. Rev. 171:224 (1968). 
6. P. R~sibois and M. Mareschal, Physica 94A:211 (1978). 
7. P. R~sibois, Physica 90A:273 (1978). 
8. H. Spohn, Ann. Phys. (N.Y.) 141:353 (1982). 
9. H. Spohn, Rev. Mod. Phys. 53:569 (1980), Section II.B.4, p. 584. 

10. J. Piasecki, J. Stat. Phys. 30:185 (1983). 


